Appendix A:

Equation of Motion

 $Power = Velocity * [Drag + Inertial + Rolling]_{Force} + \frac{(Gravity)_{work} + (Misc)_{work}}{\Delta time}$

Aerodynamic term:

$$V\left\{\left[\frac{1}{2}\boldsymbol{r}V^{2}C_{d}A_{w}\right]_{FrontWheel}+\left(1-protection\right)\left[\frac{1}{2}\boldsymbol{r}V^{2}C_{d}A_{w}\right]_{Re\ arWheel}+\left[\frac{1}{2}\boldsymbol{r}V^{2}C_{d}A_{w}\right]_{Frame}+\left[\frac{1}{2}\boldsymbol{r}V^{2}C_{d}A_{w}\right]_{rider}\right\}$$

Where:

r= air density V = velocity C_d = drag coefficient A = reference area (side area for wheels, frontal area for rider and frame) Protection = reduction in C_d of rear wheel due to its proximity to frame = .25

Inertial term:

$$\boldsymbol{w}[\boldsymbol{I}\boldsymbol{a}]_{Frontwheel} + \boldsymbol{w}[\boldsymbol{I}\boldsymbol{a}]_{\operatorname{Re}arwheel} + V \cdot M_{Tot}\boldsymbol{a}$$

Converting to linear acceleration terms and discretizing we have:

$$\mathbf{w} = \frac{V}{R}$$

$$\mathbf{a} = \frac{d\mathbf{w}}{dt} = \frac{d}{dt} \left(\frac{V}{R} \right) = \frac{1}{R} \frac{\Delta V}{\Delta t}$$

$$a = \frac{\Delta V}{\Delta t}$$

$$\therefore$$

$$V \left\{ \left[I \frac{1}{R^2} \frac{\Delta V}{\Delta t} \right]_{Frontwheel} + \left[I \frac{1}{R^2} \frac{\Delta V}{\Delta t} \right]_{Re\ arwheel} + M_{Tot} \frac{\Delta V}{\Delta t} \right\}$$

Where: $\mathbf{w} = rotational \ velocity \ (rad/s)$ $\mathbf{a} = angular \ acceleration$ $R = wheel \ radius$ $\mathbf{D}t = change \ in \ time$ $\mathbf{D}V = change \ in \ velocity$ $M_{Tot} = total \ mass \ including \ bike, \ rider, \ wheels, \ tires$ $I = moment \ of \ inertia$

Rolling resistance term:

 $V[C_{rr}M_{Tot}g]$

Where:

 C_{rr} = coefficient of rolling resistance g = gravitational acceleration (9.81 m/s²)

Gravitational term:

$$M_{Tot}g \frac{\Delta h}{\Delta t}$$

Where: **D***h* = change in elevation

Final equation of motion:

$$\begin{bmatrix}
\left[\frac{1}{2}\mathbf{r}V^{2}C_{d}A_{w}\right]_{FrontWheel} + \left(1 - protection\right)\left[\frac{1}{2}\mathbf{r}V^{2}C_{d}A_{w}\right]_{Re\ arWheel} + \left[\frac{1}{2}\mathbf{r}V^{2}C_{d}A_{w}\right]_{Frame} + \left[\frac{1}{2}\mathbf{r}V^{2}C_{d}A_{w}\right]_{rider} \\
+ \left[I\frac{1}{R^{2}}\frac{\Delta V}{\Delta t}\right]_{FrontWheel} + \left[I\frac{1}{R^{2}}\frac{\Delta V}{\Delta t}\right]_{Re\ arWheel} + M_{Tot}\frac{\Delta V}{\Delta t} \\
+ C_{rr}M_{Tot}g \\
+ M_{Tot}g\frac{\Delta h}{\Delta t} = Power_{rider}$$