## Appendix A:

## Equation of Motion

$$
\text { Power }=\text { Velocity } *[\text { Drag }+ \text { Inertial }+ \text { Rolling }]_{\text {Force }}+\frac{(\text { Gravity })_{\text {work }}+(\text { Misc })_{\text {work }}}{\Delta \text { time }}
$$

## Aerodynamic term:

$V\left\{\left[\frac{1}{2} \rho V^{2} C_{d} A_{w}\right]_{\text {FronWheel }}+(1-\right.$ protection $\left.)\left[\frac{1}{2} \rho V^{2} C_{d} A_{w}\right]_{\text {Re arWheel }}+\left[\frac{1}{2} \rho V^{2} C_{d} A_{w}\right]_{\text {Frame }}+\left[\frac{1}{2} \rho V^{2} C_{d} A_{w}\right]_{\text {rider }}\right\}$
Where:
$\rho=$ air density
$V=$ velocity
$C_{d}=d r a g$ coefficient
$A=$ reference area (side area for wheels, frontal area for rider and frame)
Protection $=$ reduction in $C_{d}$ of rear wheel due to its proximity to frame $=.25$

## Inertial term:

$$
\omega[I \alpha]_{\text {Frontwheel }}+\omega[I \alpha]_{\text {Re arwheel }}+V \cdot M_{\text {Tot }} a
$$

Converting to linear acceleration terms and discretizing we have:

$$
\begin{aligned}
& \omega=\frac{V}{R} \\
& \alpha=\frac{d \omega}{d t}=\frac{d}{d t}\left(\frac{V}{R}\right)=\frac{1}{R} \frac{\Delta V}{\Delta t} \\
& a=\frac{\Delta V}{\Delta t} \\
& \therefore \\
& V\left\{\left[I \frac{1}{R^{2}} \frac{\Delta V}{\Delta t}\right]_{\text {Frontwheel }}+\left[I \frac{1}{R^{2}} \frac{\Delta V}{\Delta t}\right]_{\text {Re arwheel }}+M_{\text {Tot }} \frac{\Delta V}{\Delta t}\right\}
\end{aligned}
$$

Where:
$\omega=$ rotational velocity (rad/s)
$\alpha=$ angular acceleration
$R=$ wheel radius
$\Delta t=$ change in time
$\Delta V=$ change in velocity
$M_{\text {Tot }}=$ total mass including bike, rider, wheels, tires
$I=$ moment of inertia

## Rolling resistance term:

$$
V\left[C_{r r} M_{T o t} g\right]
$$

Where:
$C_{r r}=$ coefficient of rolling resistance
$g=$ gravitational acceleration ( $9.81 \mathrm{~m} / \mathrm{s}^{2}$ )

## Gravitational term:

$$
M_{T o t} g \frac{\Delta h}{\Delta t}
$$

Where:
$\Delta h=$ change in elevation

## Final equation of motion:

$$
\begin{aligned}
& \left\{\begin{array}{l}
{\left[\frac{1}{2} \rho V^{2} C_{d} A_{w}\right]_{\text {FrontWheel }}+(1-\text { protection })\left[\frac{1}{2} \rho V^{2} C_{d} A_{w}\right]_{\text {Re arWheel }}+\left[\frac{1}{2} \rho V^{2} C_{d} A_{w}\right]_{\text {Frame }}+\left[\frac{1}{2} \rho V^{2} C_{d} A_{w}\right]_{\text {rider }}} \\
V\left\{\left[I \frac{1}{R^{2}} \frac{\Delta V}{\Delta t}\right]_{\text {Frontwheel }}+\left[I \frac{1}{R^{2}} \frac{\Delta V}{\Delta t}\right]_{\text {Re arwheel }}+M_{\text {Tot }} \frac{\Delta V}{\Delta t}\right. \\
+C_{r r} M_{\text {Tot }} g
\end{array}\right\} \\
& +M_{\text {Tot }} g \frac{\Delta h}{\Delta t}=\text { Power rider }
\end{aligned}
$$

